Effects of galvanic vestibular stimulation on postural limb reflexes and neurons of spinal postural network.

نویسندگان

  • L-J Hsu
  • P V Zelenin
  • G N Orlovsky
  • T G Deliagina
چکیده

Quadrupeds maintain the dorsal side up body orientation due to the activity of the postural control system driven by limb mechanoreceptors. Binaural galvanic vestibular stimulation (GVS) causes a lateral body sway toward the anode. Previously, we have shown that this new position is actively stabilized, suggesting that GVS changes a set point in the reflex mechanisms controlling body posture. The aim of the present study was to reveal the underlying neuronal mechanisms. Experiments were performed on decerebrate rabbits. The vertebral column was rigidly fixed, whereas hindlimbs were positioned on a platform. Periodic lateral tilts of the platform caused postural limb reflexes (PLRs): activation of extensors in the loaded and flexing limb and a decrease in extensor activity in the opposite (unloaded and extending) limb. Putative spinal interneurons were recorded in segments L4-L5 during PLRs, with and without GVS. We have found that GVS enhanced PLRs on the cathode side and reduced them on the anode side. This asymmetry in PLRs can account for changes in the stabilized body orientation observed in normal rabbits subjected to continuous GVS. Responses to platform tilts (frequency modulation) were observed in 106 spinal neurons, suggesting that they can contribute to PLR generation. Two neuron groups were active in opposite phases of the tilt cycle of the ipsi-limb: F-neurons in the flexion phase, and E-neurons in the extension phase. Neurons were driven mainly by afferent input from the ipsi-limb. If one supposes that F- and E-neurons contribute, respectively, to excitation and inhibition of extensor motoneurons, one can expect that the pattern of response to GVS in F-neurons will be similar to that in extensor muscles, whereas E-neurons will have an opposite pattern. We have found that ~40% of all modulated neurons meet this condition, suggesting that they contribute to the generation of PLRs and to the GVS-caused changes in PLRs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of galvanic vestibular stimulation on postural limb reflexes

25 26 Quadrupeds maintain the dorsal side up body orientation due to the activity of the 27 postural control system driven by limb mechanoreceptors. Binaural galvanic vestibular 28 stimulation (GVS) causes a lateral body sway towards the anode. Previously we have 29 shown that this new position is actively stabilized, suggesting that GVS changes a set30 point in the reflex mechanisms controllin...

متن کامل

Contribution of supraspinal systems to generation of automatic postural responses

Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of sp...

متن کامل

Central Adaptation to Repeated Galvanic Vestibular Stimulation: Implications for Pre-Flight Astronaut Training

Healthy subjects (N = 10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adap...

متن کامل

Effects of acute spinalization on neurons of postural networks

Postural limb reflexes (PLRs) represent a substantial component of postural corrections. Spinalization results in loss of postural functions, including disappearance of PLRs. The aim of the present study was to characterize the effects of acute spinalization on two populations of spinal neurons (F and E) mediating PLRs, which we characterized previously. For this purpose, in decerebrate rabbits...

متن کامل

Responses of reticulospinal neurons in intact lamprey to pitch tilt.

In the swimming lamprey, a postural control system maintains a definite orientation of the animal's longitudinal axis in relation to the horizon (pitch angle). Operation of this system is based on vestibular reflexes. Important elements of the postural network are the reticulospinal (RS) neurons, which are driven by vestibular input and transmit commands for postural corrections from the brain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 108 1  شماره 

صفحات  -

تاریخ انتشار 2012